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Parallel Domain Decomposition Methods in Fluid Models

with Monte Carlo Transport�

Henry J. Almey Garry H. Rodrigue y George B. Zimmerman z

Abstract

To examine the domain decomposition of a coupled Monte Carlo - �nite element

calculation, it is important to use a domain decomposition that is suitable for the

individual models. We have developed a code that simulates a Monte Carlo calculation

running on a massively parallel processor. This code is used to examine the load

balancing behavior of three domain decomposition strategies for a Monte Carlo

calculation. The results are presented.

1 Introduction

This paper reports on results obtained for di�erent domain decomposition strategies for

parallel processing of numerical simulations of coupled Monte Carlo - �nite element models.

Speci�cally, we are examining the parallel processing of coupled 
uid-transport problems

in dynamic optics. One application of the coupled model is the numerical simulation of

laser-tissue interaction.[1]

In dynamic optics, as decribed in [1], a Monte Carlo method is used to simulate laser

light scattering and absorption. Heat transport is modeled with a di�usion equation
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using �nite elements.The Monte Carlo simulation of the laser calculates the energy

deposition in the spatial zones by the laser, this becomes the source term S in the di�usion

equation.

The optical properties of the zones in the computational mesh are altered as the problem

progresses by calculating a damage integral based on the zone temperature history.
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kb is the Boltzmann constant, h is Planck's constant, and �S and �H are the entropy and

enthalpy of reaction, respectively.

Each zone starts with a speci�ed undamaged attenuation coe�cient �u and varies

towards a fully damaged attenuation coe�cient �d. The quantity 
 is used to generate
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a new value for the attenuation coe�cient � in each zone. During each time step, after new

damage integrals are calculated, the value of � in each zone is updated:

� = �ue
�
 + �d(1� e�
)(4)

2 Domain Decomposition of the Coupled Model

The goal is to decompose the computational domain for a coupled model to realize the

best perfomance increase from a parallel computer over a serial computer. The two models

being coupled | a Monte Carlo Method and a Finite Element method | will best take

advantage of a parallel computer using di�erent domain decompositions.

2.1 Finite Element/Di�erence methods

The decomposition of the computational grid across processors for a �nite element
calculation is reasonably well understood.

Methods such as the Recursive Spectral Bisection (RSB) [3] give reasonable decompos-
tions that lead to good load balancing and scaling on a parallel computer.

In the decompostion of the computational grid for a �nite element calculation, the
amount of computation a processor will do to advance a single zone is fairly constant,
hence a decompostion that gives each processor roughly the same number of zones will be
approximately load balanced.

Once a �nite element calculation has been decomposed across processors, the frequency
of message passing to update remote data as well as the size of the messages neeeded
is known a priori. Methods such as RSB attempt to minimize the number of grid lines
cut by the decompostion and so they may claim to minimize the ratio of computation to
communication time on a parallel computer.

2.2 Monte Carlo Methods

The approach to domain decomposition for Monte Carlo methods is somewhat di�erent
than that for the decomposition in a �nite element calculation.

Unlike the �nite element calculations discussed above, the amount of work performed
in each zone is not necessarily constant. Monte Carlo involves tracking particles in their
random walks through the computational grid. Depending on factors such as the problem
geometry and the particle sources, the bulk of the work involved with tracking particles
can be concentrated in a fraction of the zones in the computational grid. A decompostion
that assigns roughly the same number of zones to each processor cannot guarantee a good
load balance.

The conventional wisdom on parallelizing Monte Carlo calculations used to model laser
light scattering and absorption is decomposition of the particles across the processors. This
involves copying the entire computational mesh across each processor, and then dividing
the particles to be tracked evenly across the processors. After all processors are �nished
with all particle tracks, global reductions are used to get the desired quantities (e.g. energy
deposited/zone, number of scatters/zone).

This method will fail when the computational grid becomes too large to �t on a single
processor. It will also fail in a coupled model | while it provides near-perfect load balance
for the Monte Carlo, it will provide no speedup for the �nite element calculation.
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3 Domain Decomposition of Monte Carlo Calculations

A decomposition method that hopes to give some approximation of load balance must be
able to estimate the distribution of the computational work on the computational grid
involved in performing the Monte Carlo calculation. The computational e�ort required will
be roughly proportional to the number of particle scatter events that occur in a zone. First,
an estimate of the compuational e�ort required per zone must be made. Then, the domain
must be decomposed so that the estimated computational e�ort is distributed as evenly as
possible over the processors.

3.1 The Test Code

We have developed a code that runs on a serial computer that examines di�erent domain
decomposition strategies for Monte Carlo calculations.

The grid data consists of the attenuation coe�cient, �, for each zone of a problem
geometry.

The code uses a user-speci�ed algorithm to predict the work involved with each zone
and decompose the computational grid. The decomposition consists of setting a variable
for each zone indicating the processors assigned to that zone.

3.1.1 Running the Problem Once the compuational grid is set up and decomposed,
the Monte Carlo computation is executed. The number of particles to be tracked through
the problem geometry is a pre-speci�ed parameter. Each particle starts at the particle
source. For the problems run in this paper, the source starts each particle at the origin
with an initial direction along the x axis.

The distance to the next collision dcoll | an exponentially-distributed number with
mean 1=�i | is calculated, and the particle is advanced a distance dcoll in its current
direction. A new direction is then randomly generated for the particle. This process
continues until the particle travels outside of the problem geometry, or until a speci�ed
maximum number of collisions has occured.

Although this is a simplistic treatment of the Monte Carlo method, it allows examina-
tion of di�erent domain decomposition strategies.

3.1.2 Timing Simulation The particles in the simulation code are abstractions; they
each represent a group of particles. It is assumed that each processor assigned to a zone
i will equally share the work to advance a group of particles in zone i from one collision
to another. A parameter tpath represents the time needed to advance a particle. Timing
data are generated by adding tpath=Pi to the timer of each processor assigned to the zone
i, where the particle last resided. Pi is the number of processors assigned to zone i.

A module was also implemented that attempted to account for the time needed for
processors to communicate when needed. Communication would occur when a particle
track leaves the domain of a processor and travels to the domain of another processor.
Another parameter tmessage represents the time needed to pass a simulated particle from
one processor to another. Every time a particle is advanced, the simulation code compares
the processor ownership of the zone entered against the ownership of the zone exited. If the
ownerships are the same, no message passing time is added, if they are di�erent, processors
losing the particle and processors gaining the particle are charged message passing time.

The test cases discussed in Section 4 were run with tmessage = 0 (ignoring any message
passing penalty) and with tmessage = 10tpath. The results of each set of runs are summarized
in Table 1 and Table 2.
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3.2 The Decomposition

The decomposition algorithm used in this paper is fairly elementary. It seeks to divide the
computational grid into two roughly comparable halves and to assign processors to each
subdomain so that the work per processor is roughly balanced.

If wi is the estimated computational e�ort required per zone | proportional to the
estimated scatter events per zone | normalized so that the zone with the most estimated
computation has wi = 1, the decomposition algorithm will attempt to �nd wc so that the
sets:

H = fijwi > wcg(5)

L = fijwi � wcg(6)

have roughly the same number of elements. This was accomplished by starting wc at
wmin = minwi and comparing the cardinalities, jHj and jLj. While jHj > jLj, wc is
increased by adding a fraction of the di�erence between wmin and 1. The size of the step to
be taken is is a pre-speci�ed parameter. For the test cases in this paper, each step added
0.01% of the di�erence between wmin and 1.

The value used for wc is the value that makes the number of zones in L just greater
than the number of zones in H. This will partition the computational mesh into two
subdomains. For the problem geometries and estimator functions w(i) considered in this
paper, this simple algorithm genrates contiguous domains. More complicated geometries
will require an extra step to ensure that the partitioned domains are contiguous.

To assign processors to the subdomains, two more quantites are calculated: the total
amount of estimated e�ort in each subdomain

WH =
X

i2H

wi(7)

WL =
X

i2L

wi(8)

Since each processor assigned to a subdomain will have a complete copy of the zones in
the subdomain, the processors assigned to each subdomain will be able to approximately
equally share the computational e�ort required in the subdomain.

If we let NP be the number of processors available, NH be the number of processors
assigned to H and NL be the number of processors assigned to L, the processors are
assigned by initially setting NH = NL = 1 and comparing the quantites LH = WH=NH

and LL = WL=NL. For each of the remaining processors, if LH > LL, NH is incremented,
otherwise NL is incremented. This will balance the estimated e�ort per processor to within
the granularity allowed by NP . Once NH and NL are determined, the test code assigns
processors 0 to NH � 1 to subdomain H and processors NH to NP � 1 to subdomain L.

4 The Test Problems

Six test cases were considered for each decomposition strategy. The problem geometry is
the region given by (0; 20) � (�10; 10) � (�10; 10). All test cases use a 3 dimensional,
20x20x20 zone uniform orthogonal grid. In each case, the source of particles was at the
origin with all particles initial direction along the x axis.

The quantity varied in the di�erent test cases was the total attenuation coe�cient �i.
When the Monte Carlo method randomly generates the distance to the next collision for
a particle currently in zone i, it generates an exponentially distributed random distance
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with a mean of 1=�i, i.e., the mean free path �i = 1=�i [2]. Strictly speaking, the next
event a particle undergoes could be a scatter or an absorption. In the problems of interest,
however, the scatter coe�cient, �s, is much larger than �a, the absorption coe�cient, so all
events are assumed to be scatters.

The �rst test case , simple, had the attenuation coe�cient � constant throughout the
mesh so that �i = 0:5 in each zone.

The second test case, slope1, varies � linearly in x from a value of 0.1 for to a value of
10.

The slope2 test case is analagous to slope1, except that � varies from 10 down to 0.1.
The path1 case � = 50 in small region given by (0; 4)� (�2; 2)� (�2; 2) around the

source with � = 1 elsewhere. In this case almost no particles will penetrate the small area
around the source into the outlying region.

The last two test cases, plate1 and plate2, � = 10 in the slabs (0; 4)� (�10; 10)�
(�10; 10) and (4; 8)� (�10; 10)� (�10; 10) , respectively. � = 1 outside the slab.

4.1 Predictor Functions Used

Each test case was run in the simulator using three di�erent domain decomposition
strategies.

4.1.1 Geometric Decomposition The �rst strategy, Geometric Decomposition, sub-
divids the grid into as many roughly equally-sized domains as there are processors and
assigns a single processor to each domain. This is analogous to the common methods that
would be used to decompose a �nite element or �nite di�erence problem. The implicit
assumption is that the amount of work per zone is constant. This strategy does not use
the decomposition discussed in Section 3.2

The next two strategies generate an estimate of the computational e�ort in each zone
and use the decomposition discussed in Section 3.2.

4.1.2 Mean Free Path Decomposition The �rst of these estimators,Mean Free Path

Decomposition, uses the attenuation coe�cient �. This strategy assumes that, since the
mean free path � is equal to 1=�, a particle | once in a zone with a large � | will tend
to remain in that zone. This means that the processor handling that zone will have to
advance the particle many times before it leaves the zone.

To attempt to account for the fact that zones far from the particle source will tend
to have fewer particle scatter events, the mean free path estimate will also be inversly
proportional to the square of the distance from the source to the zone. So if �i is the
attenuation coe�cient for zone i, and ri is the distance from the source to zone i, Mean
Free Path Decomposition will have an unnormalized work estimate of

Wi =
�i
a

r2i
(9)

which can then be normalized to wi and passed on to the decompostion method of
Section 3.2.

4.1.3 Coarse Grid Decomposition Coarse Grid Decomposition creates a coarse ver-
sion of the problem grid and tracks a small number of particles through the coarse grid. It
then extrapolates the computational e�ort per coarse zone onto the �ner zones. The coarse
copy of the problem geometry has one zone on each axis for each Cf zones on the actual
problem geometry. Cf is a factor that is pre-speci�ed. The attenuation factor � for each
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coarse zone is calculated by averaging the � values for each corresponding zone in the �ne
mesh.

If nj is the number of particle scatter events that occured in zone j of the coarse grid
after tracking a small number of particles, and Ij is the set of zones on the �ne mesh that
correspond to zone j in the coarse mesh, then the unnormalized work estimate Wi will be
de�ned as

i 2 Ij ) Wi = nj(10)

Again Wi can be normalized to wi and passed to the decomposition method of Section 3.2.
Each test case was run using coarse grid decomposition with coarseness factors Cf = 2

and Cf = 4.

5 Results

The results of the load balancing studies for the decomposition strategies are summarized in
Table 1 and Table 2. The computation times for each processor calculated by the simulator
code were normalized so that the processor with the longest computation time has a time
of 1. The column labeled mean has the mean of the simulated computation times over
processors, the variance column contains the variance of the normalized times over the
processors. Mean times close to one indicate test cases where the decomposition yielded
roughly load balanced caclulations.

Table 1

Load Balancing Simulation Results Without Messaging

a

a a a Geometric a a Mean Free Path a a 2:1 Coarse Grid a a 4:1 Coarse Grid a
a

a Problem a a mean a variance a a mean a variance a a mean a variance a a mean a variance a
a

a

a simple a a 0.76 a 0.11 a a 0.31 a 0.10 a a 0.63 a 0.01 a a 0.97 a 4.3e-3 aa
a slope1 a a 0.77 a 0.08 a a 0.20 a 0.06 a a 0.34 a 0.03 a a 0.96 a 8.8e-3 a
a

a slope2 a a 0.85 a 0.08 a a 0.23 a 0.07 a a 0.99 a 1.3e-4 a a 0.99 a 1.6e-3 aa
a path1 a a 0.86 a 0.11 a a 0.24 a 0.18 a a 0.93 a 0.06 a a 0.94 a 0.06 a
a

a plate1 a a 0.87 a 0.10 a a 0.27 a 0.16 a a 0.95 a 0.04 a a 0.94 a 0.05 a
a

a plate2 a a 0.85 a 0.09 a a 0.42 a 0.08 a a 0.93 a 3.e-4 a a 0.82 a 2.0e-3 a
a

Table 2

Load Balancing Simulation Results With Messaging

a

a a a Geometric a a Mean Free Path a a 2:1 Coarse Grid a a 4:1 Coarse Grid a
a

a Problem a a mean a variance a a mean a variance a a mean a variance a a mean a variance a
a

a

a simple a a 0.25 a 0.074 a a 0.97 a 7.98e-4 a a 0.12 a 0.050 a a 0.37 a 0.056 a
a

a slope1 a a 0.25 a 0.074 a a 0.97 a 7.98e-4 a a 0.12 a 0.050 a a 0.37 a 0.056 aa
a slope2 a a 0.26 a 0.087 a a 0.91 a 1.84e-3 a a 0.99 a 5.82e-5 a a 0.77 a 0.023 aa
a path1 a a 0.24 a 0.16 a a 0.75 a 0.19 a a 0.96 a 0.018 a a 0.94 a 0.044 aa
a plate1 a a 0.26 a 0.15 a a 0.84 a 0.11 a a 0.50 a 0.050 a a 0.99 a 1.17e-5 a
a

a plate2 a a 0.36 a 0.089 a a 0.94 a 8.20e-4 a a 0.38 a 0.086 a a 0.52 a 0.032 a
a
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6 Conclusions and Future Work

The Geometric decomposition (Section 4.1.1) was generally the worst performer, yielding
highly unbalanced work loads. This was expected, as it considered a zone far from the
source as equally important to a zone adjacent to the source.

Of the strategies that attempted to make some prediction of the distribution of the
distribution of the work, the Coarse Grid decomposition (Section 4.1.3) provides better
results for most of the test cases considered when message passing time is ignored. If it
is assumed that tmessage = 10tpath, the Mean Free Path Decomposition generates the best
results.

The simulation code has shown some promise as a testbed that allows quick prototyping
and testing of domain decomposition algorithms for Monte Carlo transport calculations.
The results suggest that both domain decomposition strategies considered have promise.

The next task planned is the implementation of a code to allow the same elementary
Monte Carlo calculations discussed in this paper to run on a parallel computer such as the
T3D at Lawrence Livermore National Laboratory. The decomposition strategies examined
in this paper will be implemented and tested in parallel calculations.
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